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Editorial

Role of Body Mass Index on Insulin and Glucose for Breast Cancer Women
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Body mass index (BMI = Weight(kg)/Height(m2)) is frequently treated as an important risk factor for many diseases. Generally, BMI 
< 25 kg/m2 is recommended as standard, otherwise it is treated as obesity. BMI is a composite measure, and it is used as the predictor of 
many diseases [1-3]. Practically, it is used as a measure of an individual index of fatness. It is commonly used as a risk factor for the pro-
motion of many diseases such as cardiovascular diseases, diabetes, breast cancer (BC) etc [3-5]. The following inquires are investigated 
in the current editorial note:

•	 Is there any association of BMI with glucose and insulin for breast cancer women? 

•	 If it is affirmative, what are the associations? 

•	 What are the effects of BMI on glucose and insulin? 

These above inquires are investigated in the report with the help a real data set of 116 (52 controls and 64 BC patients) women 
containing 10 study factors, which is available in the UCI Machine Learning Repository. The patient populations and the data collection 
method are well described in [6,7]. For ready reference, the 10 study factors are displayed as follows:

•	 Age (years), 

•	 BMI (kg/m2), 

•	 Insulin (μU/mL),

•	 Glucose (mg/dL), 

•	 Homeostasis model assessment score insulin resistance (HOMA-IR),

•	 Adiponectin (μg/mL),

•	 Resistin (ng/mL),

•	 Monocyte chemoattractant protein-1 (MCP-1) (pg/dL),

•	 Leptin (ng/mL),

•	 Patient type (TYOP) (1 = Healthy controls; 2 = Breast cancer patients).

The above data set contains two diabetes markers such as glucose and insulin. The above inquires should be investigated in two ways 
such as modeling of BMI on diabetes markers, along with the remaining factors, and also modeling of each diabetes marker on BMI, along 
with the remaining factors. Note that BMI, glucose and insulin are all continuous variables. 
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Let us investigate the BMI modeling on glucose, insulin and the rest other factors of the data set. Note that BMI, glucose and insulin 
are all continuous positive, heterogenous and non-normally distributed variable, which can be modeled applying joint generalized linear 
models (JGLMs) using both the Log-normal and Gamma distributions [8-10]. JGL Log-normal BMI fit is better than the Gamma, which is 
displayed in table 1 and its fitting test is presented in figure 1. Figure 1a presents the absolute residuals plot with respect to BMI predicted 
values, which is almost a flat straight line, indicating that that variance is constant with the running means. Figure 1b displays the normal 
probability plot of mean BMI Log-normal fitted model in table 1. These two plots do not present any lack of fit. Hence, Log-normal fitted 
BMI model (Table 1) is closely to its true model. Detailed analysis of BMI is given in [11]. Mean and dispersion models of BMI are as fol-
lows:

Model Covariates
Log-normal Gamma

Estimate s.e. t-value P-Value Estimate s.e. t-value P-Value

Mean 

Constant 3.0370 0.0836 36.31 < 0.0001 3.0460 0.0837 36.40 < 0.0001
Glucose 0.0015 0.0008 1.80 0.0753 0.0016 0.0009 1.85 0.0670
Insulin 0.0123 0.0032 3.85 0.0002 0.0121 0.0032 3.82 0.0002
HOMA-IR -0.0421 0.0104 -4.08 < 0.0001 -0.0421 0.0102 -4.13 < 0.0001
Leptin 0.0053 0.0006 8.23 < 0.0001 0.0052 0.0007 8.10 < 0.0001
Adiponectin -0.0068 0.0018 -3.74 0.0003 -0.0068 0.0019 -3.66 0.0004
MCP-1 0.0001 0.0001 3.87 0.0002 0.0001 0.0001 3.73 0.0003
TYOP -0.0708 0.0276 -2.57 0.0116 -0.0699 0.0277 -2.52 0.0130

Dispersion 

Constant -4.445 0.7261 -6.12 < 0.0001 -4.358 0.7167 -6.08 < 0.0001
Age 0.015 0.0107 1.37 0.1751 0.013 0.0108 1.27 0.2085
Resistin -0.019 0.0132 -1.47 0.1450 -0.020 0.0134 -1.51 0.1344
Insulin -0.018 0.0156 -1.18 0.2413 -0.019 0.0157 -1.22 0.2239
                                                           AIC= 613.9                              AIC=615.062

Table 1: Outcomes for joint mean and dispersion model analysis for BMI under Log-Normal and Gamma fit.
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Figure 1: For the BMI joint lognormal fitted model in table 1, the (a) absolute residuals plot corresponding to the fitted values,  
and (b) the mean BMI normal probability plot.

Fitted Log-normal BMI mean ( Ẑ = Log(BMI) model (From table 1) is

Ẑ = 3.0370 + 0.0123 Insulin + 0.0015 Glucose - 0.0421 HOMA-IR - 0.0068 Adiponectin + 0.0053 Leptin + 0.0001 MCP-1 - 0.0708 
TYOP, 

and the BMI fitted Log-normal variance ( 2σ̂ )  model is   

2σ̂ =  exp. (-4.445  - 0.019 Resistin + 0.015Age - 0.018 Insulin).

From the above mean and dispersion models, and also from table 1, the following associations of BMI with glucose and insulin can be 
reported:

•	 The mean BMI is directly associated with glucose (P = 0.0753), concluding that BMI rises as glucose level increases.

•	 Mean BMI is directly associated with insulin (P = 0.0002), indicating that BMI increases as insulin rises. 

•	 Variance of BMI is partially inversely associated with insulin (P = 0.2413), interpreting that BMI variance rises as insulin decreases. 
In BMI variance model, insulin acts as a confounder, which is important in epidemiological studies.

On the other hand, the associations of insulin (separately glucose) with BMI can be investigated from its respective JGLMs. From the 
insulin JGLMs, the following associations of insulin with BMI can be noted [12]:
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•	 Mean insulin is directly associated with BMI (P < 0.0001), concluding that insulin rises as BMI increases. This is also supported in 
BMI modeling (Table 1).

•	 Mean insulin is inversely associated with the joint interaction effect of BMI and HOMA-IR (BMI*HOMA-IR) (P < 0.0001), concluding 
that insulin rises as BMI*HOMA-IR decreases. Note that insulin is directly associated with HOMA-IR (P < 0.0001) and as well as BMI 
(P < 0.0001), but their joint interaction effect BMI*HOMA-IR is inversely associated with insulin. This shows that even both BMI and 
HOMA-IR increase, but insulin may not increase significantly. 

Note that for this data set, glucose JGLMs do not show any association between glucose and BMI [12], while BMI mean model shows the 
positive association between them (Table 1). But it is frequently observed that glucose is positively associated with BMI, and conversely 
[13]. The report has focused the associations of BMI with glucose, insulin and BMI*HOMA-IR in both mean and dispersion models. Further 
studies may give more information. Breast cancer patients should care on BMI along with insulin, glucose and HOMA-IR regularly. 
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